tecnoloxia.org

Tecnoloxía na Educación Secundaria

As engrenaxes polo miúdo

Estamos a preparar o reto de impresión 3D da OSHWDem imprimindo engrenaxes para levar alí, e a verdade é que nolo poñen moi doado. Collemos os modelos dxf xa feitos, extruímos e limitámonos a debuxar o interior e imprimir. Pero a cousa ten algo máis de chicha. Como debuxariamos nós engrenaxes axustadas a unha táboa perforada determinada? Imos ver como facelo para poder construír nos institutos unha parede destas e adaptala ao espazo que teñamos.

Os parámetros

Antes de nada deberiamos coñecer algunhas cousiñas sobre as engrenaxes rectas, que son as que imos fabricar.

Circunferencia primitiva e diámetro primitivo (Dp): A circunferencia primitiva é a circunferencia ao longo da cal engrenan os dentes. Poderiamos substituír dúas engrenaxes por dúas rodas de fricción coas circunferencias primitivas e obteriamos a mesma relación de transmisión. O diámetro primitivo é o diámetro desta circunferencia.

Dentes (Z): Son os que realizan o esforzo de empurre e transmiten a potencia entre a roda motriz e a conducida. Podemos ter máis ou menos dentes en diferentes rodas dentadas, pero para que engrenen deberían encaixar os uns cos outros.

Módulo (m): Para que dúas engrenaxes engrenen entre si deben ter o mesmo módulo, isto é, a relación entre o diámetro primitivo en mm e o número de dentes.
m=Dp/Z

Paso circular: É a distancia entre dous puntos homólogos de dous dentes consecutivos, medida sobre a circunferencia primitiva. Para que dúas rodas dentadas engrenen deben ter o mesmo paso.
p = ? m

Ángulo de presión: É o que forma a liña de acción coa tanxente á circunferencia de paso. 20 ou 25º son ángulos normalizados.

 

Aplicacións

Hai moitas aplicacións na rede para poder debuxar engrenaxes introducindo os parámetros anteriores. Por exemplo podes usar Metric Spur Gear Generator (online) e exportar a dxf. En Inkscape tes unha ferramenta de xeración de rodas dentadas (Extensións -> Representar -> Engrenaxe -> Engrenaxe), ou se usas Onshape (online) podes instalar un engadido que che facilita moito a tarefa. Hai moitas máis aplicacións, poderás velo se buscas un pouco máis.

Vale, todo isto está moi ben, pero que parámetros introducimos alí? Agora imos con iso :-)

Procedemento

Unha opción sería elixir engrenaxes de diferentes dentes, un módulo común, calcular as distancias ás que se sitúan as diferentes rodas e furar unha táboa segundo estes valores.

Outra opción é adaptar o tren de engrenaxes a unhas distancias prefixadas. Imos coller como modelo a táboa perforada que teñen no local de Bricolabs na Domus: Buratos de 8mm formando unha cuadrícula e separados 31 mm entre si.

Imos calcular os parámetros de dúas engrenaxes cos eixes separados 62 mm. Se queremos engrenaxes do mesmo tamaño o diámetro primitivo de cada unha será de 62 mm.

Agora imos fixar un número de dentes, por exemplo Z1=17. (Despois veremos que non nos valerá calquera número)

O que debemos facer agora é calcular o módulo, que será común a todas as engrenaxes que fagamos despois.

m= Dp/Z=62/17=3,64706

Agora imos calcular o diámetro e dentes dunha roda dentada que engrene cunha das anteriores, pero a unha distancia entre eixes de 3*31= 93mm. O seu diámetro primitivo tería que ser (93-31)*2=124 mm. Como o módulo debe ser o mesmo que o anterior, con el calcularemos o número de dentes:

Z2=Dp/m =124/3,64706=34 dentes

E o mesmo podemos ir facendo collendo diferentes distancias. Por exemplo en diagonal, como na seguinte imaxe, formando un ángulo de 45º. Podemos calcular a diagonal “a”: 2*31=a*cos45 -> a= 2*31/cos45= 87,6812 mm

Polo tanto, o diámetro primitivo da nova roda medirá: (87,6812-31)*2=113,3625mm 

Agora co módulo calcularemos o número de dentes:  Z3= Dp/m= 113,3625/3,64706=31 dentes

E así procederemos sucesivamente para calcular o número de dentes para outras distancias. Ollo! que deberá darnos sempre un número enteiro de dentes (ou moi aproximado). Se un cálculo nos dese 23,5 dentes obviamente non valería, e habería que calcular de novo. Facelo a man resulta pesado, así que mellor será usar unha folla de cálculo ou un script que nos axude. No caso da Oshwdem utilizaron este script para buscar o módulo e dentes para os diámetros que querían.

Por exemplo, poderían valernos os seguintes valores:

Módulo 3,647058824 3,444444444 2,695652174
diámetros dentes dentes dentes
eng1 62 17 18 23
eng2 124 34 36 46
eng3 113,3625 31,08 = 31 32,91 =33 42,05 =42

 

E aquí tendes unha aplicación de scratch para facer os cálculos, e que mostra os conxuntos de valores válidos atopados:

 

Como queremos que as rodas xiren libremente sobre os eixos de 8mm, facemos no centro de cada engrenaxe un burato de 9mm. Evitaremos que se escapen do eixo engadindo unha arandela e unha xunta tórica.

Unha vez calculadas as engrenaxes que necesitamos introducimos os parámetros no noso xerador de engrenaxes favorito seleccionando un ángulo de presión de 20º, debuxamos o interior e imprimimos.

Xa sabemos como se fai, así que podemos adaptar este chulo reto da OSHWDem a calquera parede e co panel perforado que teñamos máis a man. Penso que nos talleres de tecnoloxía non debería faltar unha. Podemos, ademais, conectar un motor e facer cálculos das relacións de transmisión e velocidades angulares, todo iso sobre unha montaxe real.

Actualización:

Estas son as pezas que levamos á OSHWDem218

E neste enlace podedes ver un vídeo coa montaxe en movemento: https://www.instagram.com/tv/BqE8nCbHV5J/

Ready to Crawl

“Ready to Crawl” é unha colección de preciosos mecanismos que imitan á natureza creados por fabricación aditiva polo deseñador xaponés Hiroshi Sugihara. Non vola perdades!

Mecanismos de metamateriais

metamaterial-picOs metamateriais, en xeral, son estruturas artificiais que se caracterizan por ter unhas propiedades macroscópicas diferentes ás dos seus materiais constituíntes básicos, pois ditas propiedades dependen máis da súa estrutura interna que da súa composición. Constrúense mediante patróns repetitivos que permiten modificar as propiedades mecánicas, ópticas ou electromagnéticas do material.

impresion_3d_rellenoSe ben o campo de investigación máis importante deste tipo de materiais está da man da nanotecnoloxía, un exemplo macroscópico sinxelo témolo na estrutura interna dun obxecto impreso en 3D. Segundo a estrutura que elixamos podemos modificar as propiedades mecánicas do obxecto: resistencia á compresión, elasticidade, etc.

Un grupo de investigación alemán quixo ir máis alá do concepto de material creando obxectos cuxa propia estrutura permite realizar funcións mecánicas controladas. Estes mecanismos de metamateriais consisten nun único bloque de material cunha estrutura interna que se deseña co fin de lograr un determinado movemento macroscópico.

csm_web_pliers-01_040f80f413

A clave está na combinación dunha serie de células ríxidas e outras capaces de deformarse de forma controlada cando se aplica unha forza.

csm_fig_shear_cell-05-05_adc2014fe6

Neste vídeo podes ver como funcionan:

[youtube: Metamaterial Mechanisms (UIST’16)]

 

Tendes máis información na web de Hasso Plattner Institute.…

Dividir entre cero cunha calculadora mecánica

lim0Quen estudou matemáticas no Bacharelato ten claro que a división dun número entre cero é unha indefinición, pois cando x tende a cero, n/x aproxímase a infinito. Isto soemos simplificalo dicindo que calquera número dividido entre 0 dá infinito.

lim01

Se facemos esta operación nun programa informático, a división por cero é considerada coma un erro lóxico. No caso de que se produza dita operación, os procesadores matemáticos son capaces de detectala e, nese caso, entregan un informe de erro que detén o proceso que se está a executar e evita que a aplicación entre nun bucle infinito.

SyntaxErrorProba dividir entre cero na túa calculadora de peto e verás como a resposta é unha mensaxe de erro ou de operación non válida.

Pero que sucede nunha calculadora mecánica? Podes ver o resultado neste vídeo:

[youtube: Esto es lo que pasa si divides entre 0 con una calculadora mecánica.] (Vía: @iagovarela)

Nestas máquinas os cálculos realízanse facendo xirar sucesivos engrenaxes un número determinado de veces segundo a operación que se realice. No caso das divisións, o procedemento é similar ao método que utilizamos cando dividimos manualmente, a base de restar sucesivamente para encontrar cada díxito do resultado. Ao ser o divisor igual a 0, a resta execútase sempre, pero o resultado non cambia, polo que a operación se repite infinitamente intentando obter un resultado. A máquina entrou nun bucle infinito!

Algunhas calculadoras mecánicas máis modernas xa incluían un “E” para indicar erro cando se producía, pero enseguida chegaron as calculadoras electrónicas que fixeron que estas bonitas e ruidosas máquinas pasasen á historia.…

As esculturas cinéticas de Jennifer Townley

Imos rematar a semana con algo de tecnoarte, a través das esculturas cinéticas de Jennifer Townley, unha artista holandesa que crea interesantes máquinas que xeran repetitivas e cambiantes formas, producindo unha sensación hipnótica.

Asinas – 2015

[Asinas – Jennifer Townley – 2015 from Jennifer Townley on Vimeo.]

Neste vídeo podes ver unha animación con SolidWorks na que se observan os mecanismos que integran a máquina e o seu funcionamento:

[youtube:Jennifer Townley – SolidWorks Mechanical Sculpture]

Bussola – 2014

[Bussola – Jennifer Townley – 2014 from Jennifer Townley on Vimeo.]

Alhambra – 2010

[Alhambra – Jennifer Townley – 2010 from Jennifer Townley on Vimeo.]

Lift – 2009

[Lift – Jennifer Townley – 2009 from Jennifer Townley on Vimeo]

Na web de Jennifer Townley podes ver outros dos seus interesantes traballos.…


1 2 3 16